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The work by Barbi, Bologna, and Grigolini �Phys. Rev. Lett. 95, 220601 �2005�� discusses a response to
alternating external field of a non-Markovian two-state system, where the waiting time between the two
attempted changes of state follows a power law. It introduced a new instrument for description of such
situations based on a stochastic master equation with reset. In the present Brief Report we provide an alterna-
tive description of the situation within the framework of a generalized master equation. The results of our
analytical approach are corroborated by direct numerical simulations of the system.
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This Brief Report is motivated by the recently published
Ref. �1�, which discusses an important problem of the re-
sponse of a non-Markovian system to a time-dependent field.
It also introduces a new instrument for the description of
such situations based on a Markovian but stochastic master
equation with reset. Let us consider a two-state model with a
particle jumping between the two sites. A particle arriving at
a site i=1,2 at time t� stays there for a time t distributed with
the probability density function �PDF� ��t� before the next
attempt to jump is made. The probability wij that the particle
really jumps from i to j is modulated by the force f�t�:

w12�t� =
1

2
�1 + �f�t�� ,

w21�t� =
1

2
�1 − �f�t�� . �1�

This model corresponds to the one of Ref. �1� and to what is
called a “phenomenological approach” in Ref. �2�. Two
different types of waiting-time distributions �WTDs� have
to be distinguished: the ones possessing a first moment and
the ones whose first moment is absent. The WTD PDFs
discussed in Ref. �1� were of the form of power laws
��t�� t−� with 2���3 for the first type and 1���2 for
the second type. Two-state systems with WTDs of the first
type show at long times a behavior similar to those of Mar-
kovian two-state systems �as also discussed in Ref. �3��; sys-
tems with WTDs of the second type are special: the linear
response to the external field is nonstationary and dies out in
the course of time.

The situation discussed in Ref. �1� is very close to models
of continuous-time random walks �CTRWs�, but differs from
the typical CTRW problem in two respects: First, the transi-
tions take place under the influence of a time-dependent
force, and second, the particle does not necessarily make a
jump on each attempt, but may stay where it was.
Continuous-time random walks can be very effectively de-
scribed using approaches based on generalized master equa-
tions. Therefore it is reasonable to give a derivation of the
generalized master equation �GME� for this particular situa-
tion and to compare the results with the ones obtained in
Refs. �1,2� using alternative approaches.

The derivation of the GME follows the lines of Ref. �4�
�which, in its turn, generalizes the approach of Ref. �5��,
where, however, the differences with respect to a simple
CTRW have to be taken into account. Let us first consider a
general system whose states are numbered by k=1,2 . . . ,n
and where a change of state takes place at each attempt. The
transition probabilities Wij�t� for a system making a jump
from state i to state j are time dependent. These probabilities
are normalized, � j�iWij�t�=1. As in Ref. �4�, the generalized
master equation follows from two balance conditions, prob-
ability conservation in a given state and under transitions
between different states.

The probability balance for the state k reads

Ṗk = jk
+ − jk

−�t� �2�

�where the overdot denotes the time derivative� with jk
±�t�

denoting the gain and loss currents for a state. A system
leaving its state k at time t either was in k from the very
beginning or arrived at k at some 0� t�� t so that

jk
−�t� = ��t�Pk�0� + �

0

t

��t − t��jk
+�t��dt�

= ��t�Pk�0� + �
0

t

��t − t���Ṗk�t�� + jk
−�t���dt�, �3�

where in the second line Eq. �2� was used.
The solution to this equation is given by the integral op-

erator

jk
−�t� = �̂Pi�t� = �

0

t

��t − t��Pi�t��dt� �4�

with the memory kernel given by its Laplace transform

�̃�u� =
u�̃�u�

1 − �̃�u�
. �5�

Note that all these equations are local, i.e., involving only
variables pertinent to the same state.

The probability conservation for transitions between dif-
ferent states gives the relation between the gain current in the
state k and loss currents in all other states:
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jk
+ = �

i�k

Wij�t�ji
−. �6�

Inserting the corresponding expressions into the first balance
equation gives a GME for Pk�t�:

Ṗk�t� = �
i�k

Wij�t��̂Pi�t� − �̂Pk�t� . �7�

Note that the integral operator �̂ does not commute with the
function of time Wij�t�; the sequence of this function and the
integral operator acting only on P�t� is of importance.

The two-state system at hand differs from the general
scheme discussed above due to the fact that an attempted
jump does not lead to a change in the system’s state, but
starts the waiting time anew. To adapt our general approach
to this situation we assume that the attempt not leading to a
jump still corresponds to a change of the state of the system,
say between k=1 and k=3 for site 1 or between k=2 and k
=4 for site 2; the structure of the corresponding transitions is
shown in Fig. 1.

For our four-state system Eq. �7� reads

Ṗ1 = w21�t��̂P2�t� + �1 − w12�t���̂P3�t� − �̂P1,

Ṗ3 = w21�t��̂P4�t� + �1 − w12�t���̂P1�t� − �̂P3,

Ṗ2 = w12�t��̂P1�t� + �1 − w21�t���̂P4�t� − �̂P2,

Ṗ4 = w12�t��̂P3�t� + �1 − w21�t���̂P2�t� − �̂P4. �8�

This auxiliary system of equations can be rewritten as a
pair of equations for the probabilities p1= P1+ P3 and p2
= P2+ P4 to be at sites 1 or 2, respectively, following as sums

of the first and the second, and of the third and the fourth
equations, respectively:

d

dt
p1�t� = − w12�t��̂p1�t� + w21�t��̂p2�t� ,

d

dt
p2�t� = w12�t��̂p1�t� − w21�t��̂p2�t� , �9�

a generalized master equation following the standard form of
a master equation for a two-state Markovian system.

We now follow the program of Ref. �1�, and reduce
these two equations to a single equation for the mean ��t�
= p1− p2=2p1�t�−1, the main quantity of interest in Ref. �1�.
Inserting the expressions for wij, one gets �d /dt+�̂���t�
=−�f�t��̂1. For ��0�=0 and f�t�=cos�	t� one gets

��u� = −
��1 − ��u��

u
Re� ��u + i	�

1 − ��u + i	�� . �10�

This equation coincides with Eq. �62� of Ref. �2�. It repro-
duces the asymptotic behavior found in �1� for ��t� possess-
ing a first moment, i.e., for �
2. However, for the aging
case 1���2 the prediction differs from Eqs. �32� and �33�
of Ref. �1�: Our result Eq. �10� differs from the results of
Ref. �1� by the fact that it oscillates not around zero, but
around some mean which tends to zero only very slowly
�here as 1/	t�, an effect called “Freudistic” memory in Ref.
�6�.

In order to check the validity of Eq. �10� we compare it
with the result of direct numerical simulation of the process.
We took ��t�=1/	�t−et erfc�	t� corresponding to a long-
tailed ��t� with �=3/2 and with T=1. The analytical result
is then given by a convolution

��t� = ��/���
0

t

et−t� erfc�	t − t��cos�	t��/	t�dt�. �11�

Figure 2 compares this expression with the results of numeri-
cal simulation for 	=1 and �=0.1.

FIG. 1. The structure of transitions in a four-state model equiva-
lent to the two-site model of Ref. �1�. The only nonzero transition
probabilities are W13=W31=1−w12, W24=W42=1−w21, W12=W34

=w12, and W21=W43=w21. FIG. 2. Analytical result Eq. �11� �line� and results of numerical
simulation averaged over 107 realizations �crosses�. The parameters
are �=3/2, 	=1, and �=0.1. Shown is the dimensionless quantity
� /� as a function of dimensionless reduced time t /T.
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Let us summarize our findings. We considered a situation
of a two-state system with a given waiting-time distribution
between the attempted changes of state, a model discussed
in Ref. �1� and termed a phenomenological approach in
Ref. �2�. We derived the generalized master equation describ-

ing this nonstandard situation, which reproduces part of the
results of Refs. �1,2�. The validity of our generalized master
equation approach to the aging situation is proved by com-
parison to direct numerical simulations of the corresponding
system.
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